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FIELD OF HORIZONTAL VELOCITIES CREATED BY A MOVING SOURCE 

OF PERTURBATIONS IN A STRATIFIED FLUID 

V. F. Sannikov UI)C 551.466.81 

A linear formulation is used in the present study to examine a three-dimensional prob- 
lem concerning determination of the field of horizontal velocities u(x, y, z) created by 
a point source moving uniformly and rectilinearly in an inviscid, incompressible, vertical- 
ly stratified fluid. Formulas representing the exact solution of the problem are obtained 
in the form of single integrals. In contrast to the solution obtained in [i] for the verti- 
cal component of velocity, the expressions obtained here for u contain nonwave terms which 
ensure that the series converge. Complete asymptotic expansions of u are constructed for 
x 2 + y2 + ~ and it is shown that they converge when the contributions of the individual 
modes are summed. An example of calculation of the components of u in the nearby region 
is presented for a homogeneous fluid and a uniformly stratified fluid. It is shown that 
the singularity normally present in the calculation of wave characteristics in the nearby 
region is eliminated if the term corresponding to the case of a homogeneous fluid is removed 

from the solution. 

i. Let an inviscid incompressible fluid occupy the region -~ < x I, y < +~, -h < z < 
0. The density of the undisturbed fluid p0(z) depends only on the vertical coordinate z 
and does not decrease with depth. A source of intensity q, located at the depth h 0 reckoned 
from the position of the undisturbed free surface z = 0, moves at a constant velocity c 
in the negative direction of x i axis. The stationary wave field created by the source is 
described by the following equations in the coordinate system connected with the source 

x = x I - ct 

Po D v  : - - V P  J r  gP,  D p  : pog'lN2w, VV = q6(x, y, z + ho) ( 1 . 1 )  
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with the boundary conditions being 

P =P0g~ ,D~  = w(z = 0 ) ,  w =  0(z = - - h ) ,  ( 1 . 2 )  

where D = c a / a x ;  v = (u ,  v ,  w),  p, p a r e  t h e  p e r t u r b e d  v e l o c i t y ,  d e n s i t y ,  and p r e s s u r e  of  
t h e  f l u i d ;  5 i s  t h e  v e r t i c a l  d i s p l a c e m e n t  o f  t h e  f l u i d  p a r t i c l e s ;  g = (0 ,  0, - g )  i s  a c c e l e r a -  
t i o n  due to  g r a v i t y ;  N2(z) = - g p 0 - 1 d p 0 / d z  i s  t h e  s q u a r e  of  t h e  V a i s a l ~ - B r e n t  f r e q u e n c y ;  
6 ( ' )  i s  t h e  Di rac  d e l t a  f u n c t i o n .  E q u a t i o n s  ( 1 . 2 )  must be augmented by f o l l o w i n g  r a d i a t i o n  
c o n d i t i o n :  t h e  main wave d i s t u r b a n c e s  a r e  formed beyond t h e  s o u r c e .  

E q u a t i o n s  ( 1 . 1 ) - ( 1 . 2 ) e n a b l e u s  t o  o b t a i n  e q u a t i o n s  f o r  t h e  v e r t i c a l  component of  v e l o -  
c i t y  

DZ(powz)~ + po(N 2 + D2)A2w = qD~[poS~, y, z + ho)]z (i .3) 

with the boundary conditions 

(D ~ - g A 2 ) w  = 0  (z = 0 ) ,  w = 0  ( z = - - h )  (1.4) 

and an expression linking the horizontal velocity field u = (u, v) with w: 

a ~ a ~ (o  o) 
=-- -- v~= ~ , ~  (1.5) A2u = V2 [q8 (x, y, z + ho) --~w~], A2 ox" + Oy" 

S u b j e c t i n g  Eqs. (1.3)-(1.4) t o  F o u r i e r  t r a n s f o r m a t i o n  w i t h  r e s p e c t  t o  t h e  v a r i a b l e s  x and 
y, for the transforms of the vertical component of velocity 

oo 

w (~, 0, ~) = (2~) -~; S ~ (x, v, ~) exp [- ~r~ (e)] d~ dr, 
--oo 

0 ~ r < co, 0 ~ 0 < 2~, ~(0) = xcosO + ysinO 

we o b t a i n  t h e  b o u n d a r y - v a l u e  problem 

(poWz)z + po(N ~ --  [~)W = q~[por + he)1~, ( 1 . 6 )  
Wz - -  g~,W = O (z = 0 ) ,  W = O (z = - -h) ,  X = (c cosO)-~, [~ = r  2, ( 1 . 7 )  

ql = q/2n. 

We will use U to represent the transform of horizontal velocity 
following from Eq. (1.5) for 

U = it-iv(0)[Wz - -  qla(z + he)l, v(0) = (cos 0, sin O). 

u .  We obtain the 

Let V1(z) and V2(z) be solutions of the homogeneous equation 

(poVhz)z + po(N~ - -  ~)V k = 0 (k = i ,  2), 

satisfying the respective boundary conditions at z = 0 and z = -h: 

v ~  - g ~ L  = o (z = o), v~ = o ~ = --h).  

( 1 .8 )  

( 1 .9 )  

The solution of inhomogeneous equation (1.6) can be written in the form 

ql /vl(z) v~z ("  h0) (-- he < z < 0), 
W = - - W r  ~ (Vlz (__ho)v2(z )  ( - - h ~ z < - - h o )  , 

Wro = VI~V2 - -  V1V2z (z = --ho). 

For the transforms of horizontal velocity we have 

U = - - i q l p o ~ r - ' v ( 0 ) r  g, z), 

t /v~z (z) v2z ( -  he) (-- he < ~ < o), 
r (~, 8, Z) = Po (-- he) Wro [Vi~ (-- he) V2~ (z) (-- h • z < --  he). 

It is known from the spectral theory of ordinary differential equations [2] that the 
solutions of Eqs. (1.8)-(1.9), together with their derivatives with respect to z, are 
integral functions of ~ and 6. Thus, the function r 6, z) is meromorphic with respect 
to these parameters, while the poles r are zeros of the Wronskian Wr 0 and eigenvalues of 
the Sturm-Liouville problem corresponding to Eqs. (1.8)-(1.9). We choose the square of 

(1.1o) 
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the wave number 6 as the spectral parameter and we let 6n, W n (n = I, 2, .... 61 > 62 > 

... be a set of eigenvalues and orthonormalized eigenfunctions independent of % {S p0Wn x 
\ -A 

Wmdz = 6nm, 6nm is the Kronecker symbol). 

The properties of dispersion relations 6n(%) were described in [i]. The functions 

= 6n(%) are monotonically increasing and have one simple zero % = %n" The highest phase 

velocity of the waves of the n-th mode c n = %n -I/2 . 

Meromorphic function ~(%, $, z) can be expanded into simple fractions [3], the form 
of the expansion depending on the asymptote of ~ at 161 + ~ if the expansion is formed in 
the parameter $ or at I%1 + ~ if it is formed in %. It is known from the theory of Sturm- 
Liouville problems [2] that at 161 + ~ 

We find from Eq. (1.11) that ~ = O(Irlelr1(z+h) l) at 161 + =. Using the estimate obtained 
and applying the theorem of the expansion of a meromorphic function into simple fractions 
[3], we obtain 

n=l 

~ = m~:(z)w.:(-h0). 

Asymptotic estimates analogous to Eq. (i. Ii) also exist for the dependence of ~ on %. 
Let %n (n = i, 2, .... %1 < %2 < ...) be eigenvalues of problem (1.8)-(1.9) at ~ = 0. Then 
resolving ~(%, 0, z) into partial fractions in %, we write 

~ N - (1.12)  
0 

--h 
Now inserting Eq~ (1.12) into Eq. (1.10) and calculating the inverse Fourier transforms 
of horizontal velocity, we obtain the exact solution of the linear problem 

I~ = ~-~ R~ ~ ~ (O).~;~/~n (~  ~, Ao) F [ - -  ~ / ' ~  (0)] dO, ( 1 . 1 3 )  
-hi2 

J " t  . . . . .  
s~ = ~-~ ~ (o) ~-~ (o) [ ~ (x~) (~ - z~) ~ (~) j dO. 

-n/~ 
Here, R = (x, y), (R, ~) are polar coordinates of the horizontal plane (x, y); the integral 
in in this formula, having singularities at cos (8 - ~) = 0, is calculated in the sense of 
and eigenvalue; the function F(~) is expressed through the integral sine and cosine F(~) = 
Ci(x) sinx + [~/2 - Si(~)] cos~, largxl < ~" The derivation of integrals of the type In 

was described in [I, 4]. 

Equation (1.13) gives the exact solution of the linear problem of the field of perturba- 
tions of horizontal velocities created by a point source moving uniformly and rectilineariy 
in a fluid with arbitrary stable stratification. The integrals in Eq. (1.13) are simple 
integrals. Methods of calculating them were described in [i]. 

2. Let us construct the asymptotic expansion of the above solution at R + =. The 
integrals I~ from Eq. (1.13) are of the same type as the integrals entering into the expres- 
sions for the vertical displacements [4]. Following [4], their complete asymptotic expan- 
sion can be written in the form 

I~L ~ P~ (R, 0~) + Sn (~), (2 .1)  
h 
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where Pn(R, O k ) are the contributions of the stationary points, which are solutions of the 
equation 

d [a~/~ Cos ~ .  ( o -  v)] = o ~t ~m p~'  = o. 

Formulas for the contributions of individual stationary points and uniform asymptotes for 
the case of neighboring stationary points were presented in [5]. The components Sn(R) are 
power series [4] 

S~(R) -~ ~ (-- 1) ~+1 (2m)I a ~ R  -(2~+1), 

~/2 

a~m = ~ v (0) C n ~  (~+9 [cos (0 - -  ?)1-0~+*) dO. 
-~/2 

In  t h e  i n t e g r a l s  anm, t h e  m u l t i p l i e r s  ~ n - ( m + l ) [ c o s  (8 - ~ ) ] - ( 2 m + 1 )  s h o u l d  be r e g a r d e d  as  
generalized functions. The regularized form of ~,m was presented in [4]. 

When we substitute Eq. (2.1) into Eq. (1.13), we have an asymptotic expansion of the 
solution which is complete at R + =. The stationary points make the main contributions in 
the far region of the wave field, while allowance for the components Sn(R) makes it possible 
to expand the range of application of the asymptote. After having rearranged the terms of 
the series, we write the expansion of the overall contribution of the modes. A question 
which arises here is the convergence (with summation over n) of series for the terms of 
such an expansion. First we will examine the coefficient with R -I in the n-th term of the 
sum (1.13). After reducing the similar terms 

I~ ~ (~' ~' ~) R + ~-X ~O) eo 
= ~; ( ~ )  - . / ~  ~ (a ) - (x -  x~) " 

Calculation of Inl shows that |n~= 0 at c > Cn, while at c < c n 

I~1 ~ (xn, ~, he) (xa~1, y~n) d~ = V t  - (c/c~) 2. 
= ~ (~} ~ (x ~ + y2~)  , 

Since c n + 0 when n + ~, then the number of nontrivial terms in the series with R -I is 
finite. At n + ~, we find the following from the asymptotes of the eigenvalues and normal- 
ized eigenfunctions of the Sturm-Liouville problem that 

pn = O(nD, ~ = O(n-D, ~ = 0 ~ 9 ,  ~ ' (Ln)  = 0 ( 0 .  

Using these estimates, we can prove that the value of the terms of the series with R -(2m+I) 
(m ~ i) is O(n-2m). It follows from this that the corresponding series converge. As re- 
gards the contributions of the stationary points, we note that at n + ~ the main wave dis- 
turbances of the n-th mode are concentrated in the region I~I < ~n, ~n = arcsin (Cn/C). 

Thus, at the fixed point (x, y), y # 0, the contributions of the stationary points have 
only a finite number of modes. 

3. We will analyze features of calculation of the characteristics of the horizontal 
velocities in the near field for the cases of homogeneous and uniformly stratified fluids. 
Here, we will make use of the Boussinesq approximation and the condition of a "solid cover" 
on the surface of the fluid. At P0 = const, Eq. (1.13) reduces to the form 

q R 2~R "~ ~nz e ~  ~nh~ K i I ( 3 . 1 )  Uo=[g ~ t +  h ~=xn ' c~163  - 

[K~(~)  i s  a m o d i f i e d  B e s s e l  f u n c t i o n ] .  One more r e p r e s e n t a t i o n  f o r  'u0 i s  o b t a i n e d  f rom 
t h e  w e l l - k n o w n  f o r m u l a s  f o r  an i n f i n i t e  f l u i d  by u s i n g  t h e  method o f  m u l t i p l e  r e f l e c t i o n :  

u o =  ~ [u l ( x , y , z - h  o +  2 ~ k h ) + u l ( x , y , z + h  0+2nkh)], (3 .2 )  

u ~ ( x , y , z ) =  q a 
4n (R 2 + z2)3/~" 

S e r i e s  ( 3 . 1 )  and ( 3 . 2 )  can be changed  i n t o  each  o t h e r  by means o f  t h e  P o i s s o n  summation 
formulas, as was described in [6]. It was also noted in [6] that series of the type (3.1) 
converge more rapidly at large values of R than at small values. The character of the con- 
vergence of Eq. (3.1) follows from the estimates 
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KI~)  = W'g/(2t) e-t[ t + 0( t - l )  ] ( t > > i ) .  ( 3 .3 )  

Series of the type (3.2) converge more rapidly at small R. 

In the case N 2 = const, Eq. (1.13) reduces to the form 

2~h[R~ + 2 ~  ~ Re ~(e)p:l/~F[ , ~ =  - - (~ /h )  ~. (3 .4  = cos  co~ |~  ~ - p ~ / ~ ( o ) ]  t c~x  ) 
n=l --g/2 

Comparison of Eqs. (3.1), (3.3), and (3.4) shows that the terms of series (3.1) and (3.4) 
have identical singularities at R + 0. considering this, we construct the following expres- 
sion for u : 

u = U o + ~ - U o ) ,  (3 .5)  
where the first term is calculated from Eq. (3.2) and the second is the sum of the term-wise 
differences of Eqs. (3.4) and (3.1). Here, all of the terms of series (3.5) are finite at 
R ~ O. 

Figure l depicts the near field of perturbations of horizontal velocity. The figure 
shows values of the longitudinal (a, b) and transverse (c, d) components of u , normalized 
with respect to max lu I, for the homogeneous (a, c) and stratified (b, d) fluids. The 
calculations were performed for z = 0, h 0 = 0.4h, c/c I = 2, c I = Nh/~. Analysis of the 
results shows that the perturbation field in the homogeneous fluid is concentrated above 
the source and rapidly attenuates with increasing distance from the latter. Allowance for 
stratification negligibly alters the perturbations of the flow ahead of the source and 
determines the process of wave formation behind it. It should be noted that, in terms of 
amplitude, the contribution of the internai waves in the near region behind the source is 
comparable to the perturbations in the region abovethe source. 
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Thus, two regions can be discerned in the velocity perturbation field in a stratified 
fluid: near the wave generator, processes are dominated by effects associated with flow 
about the generator (as in the case of a homogeneous fluid); the velocity perturbation field 
at increasing distances behind the source is formed by internal waves caused by stratifica- 
tion. 
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